Student name:

Second Quiz
Number: \qquad

1) Determine which of the following functions is Riemann integrable on [0,1]. Justify
a) $f(x)= \begin{cases}\frac{\sin x}{x} & x \neq 0 \\ 1 & x=0\end{cases}$
b) $f(x)= \begin{cases}\sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
2) Give an example of a function $f:[a, b] \rightarrow \mathbb{R}$
a) That is in $\mathcal{R}[c, b]$ for every $c \in(a, b)$ but which is not in $\mathcal{R}[a, b]$
b) Such that $f(x) \geq 0 \forall x \in[a, b], \int_{a}^{b} f=0$, while $f(x) \neq 0$
3) If $f \in \mathcal{R}[a, b]$, prove that $|f| \in \mathcal{R}[a, b]$.
4) Suppose that f is continuous on $[a, b]$, prove that $\exists c \in[a, b] \ni \int_{a}^{b} f=f(c)(b-a)$.
5) Suppose that f is a bounded function on $[a, b]$ such that either $f^{+}=\max \{f, 0\}$ or $f^{-}=\min \{f, 0\}$ (but not necessarily both) is in $\mathcal{R}[a, b]$.
Does it necessarily follow that $f \in \mathcal{R}[a, b]$? If so prove it; otherwise provide a counterexample.
